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Modeling Planar Arbitrarily Shaped
Microstrip Elements in Multilayered Media
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Abstract—Microstrip elements of arbitrary shape are modeled
in multilayered media. The Green’s function for the multilayered
structure is developed in a form useful for efficient computation
for interacting microstrip elements, which may be located at any
substrate layer and separated by an arbitrarily large distance.
This result is of significant value to a variety of applications
in wave propagation besides those discussed in this paper. The
mixed-potential integral-equation (MPIE) method is developed
in the spatial domain. Examples for regularly/arbitrarily shaped
geometries in single and multilayered media are presented. These
involve the optimization of an open-end microstrip, a radial-
stub microstrip, a five-section overlay-gap-coupled filter, and a
circular-patch proximity-coupled microstrip antenna. Very good
agreement with measurement and other published data is ob-
served.

I. INTRODUCTION

I N THE DESIGN of microwave monolithic integrated cir-
cuits (MMIC’s) and millimeter-wave integrated circuits,

electromagnetic (EM) modeling of microstrip elements (in-
terconnects, antennas, and circuits) becomes important as
the operating frequency becomes higher. Full-wave analysis
includes the effects of EM coupling, surface waves, and
radiation loss while traditional quasi-static methods [1], [2]
and equivalent waveguide models [3] fail to yield sufficiently
accurate results. Moreover, the ability to analyze circuits of
arbitrary shape embedded in a multilayered medium allows
for more versatile designs with higher density. The authors
have selected the mixed-potential integral equation (MPIE)
method [4]–[7] combined with triangular-patch function [8]
to solve this general configuration. The MPIE applied in
the spatial domain was determined to be more efficient for
numerical modeling of arbitrarily shaped printed circuits than
the electric-field integral equation (EFIE) techniques applied in
the spectral domain [9]. In addition, this method gives a better
physical interpretation of current flow and field distribution.
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The triangular basis function has been successfully used to
solve irregular scatterers [8], [10], and [33]. It describes the
vector surface current, matches the boundary conditions with
no normal components along the boundary edges, and has the
potential to represent nonplanar current flow. The unknown
current distribution on microstrip elements can be modeled
very accurately with triangular basis functions used in the
method of moments (MoM’s).

Derivation of the spatial-domain dyadic Green’s function
begins with closed-form formulation in the spectral domain.
Several papers using the MPIE formulation have given explicit
expressions for single-layered or double-layered structures
[12]–[15]. The field and source points were assumed to be
embedded in the same layer, which is not applicable for cases
with more than three layers. In this paper, the authors derive
two different formulations for multilayered structures, and the
position of the field point dictates which formulation is chosen.
This Green’s function can be evaluated without difficulty for
any number of layers. To obtain the Green’s function in
the spatial domain, Sommerfeld integrals must be evaluated.
Recently, the complex image method (CIM) [14], [15] was
proposed to approximate the integrand with several complex
exponential terms, making the computation very efficient.
However, the following parameters must be determined before
applying the CIM: sampling range, expansion terms, and
surface-wave poles. The first two parameters depend strongly
on the properties of the layers, and the surface-wave poles of
a medium with more than three layers are difficult to find.
Therefore, the CIM is not well suited for general geometries
with multiple layers. Instead, the authors employ the traditional
quadrature method to evaluate Sommerfeld integrals, and
apply several techniques to speed up the computations.

The MPIE–MoM analysis presented here starts by meshing
the whole geometry with small triangular facets using the
meshing algorithm developed by [16]. The spatial-domain
Green’s function is evaluated over the range of microstrip
elements using Sommerfeld integrals, then stored as numerical
tables for interpolation. Galerkin’s procedure is followed to
create a matrix equation from the MPIE. These procedures will
be discussed in Section II. Four examples have been investi-
gated and compared with either measurements or published
data in Section III.

II. MPIE FORMULATION

A generalized multilayered medium is shown in Fig. 1.
Each substrate layerhas a thickness , and relative permit-

0018–9480/97$10.00 1997 IEEE



TSAI et al.: MODELING PLANAR ARBITRARILY SHAPED MICROSTRIP ELEMENTS IN MULTILAYERED MEDIA 331

(a) (b) (c)

Fig. 1. Generic multilayered medium: (a) open in upper half space, (b) shielded, and (c) open in both upper and lower half spaces.

tivity and permeability and , respectively. The upper
and lower ground planes are removable to represent either
a shielded, semi-open, or open structure. The medium is
assumed to be infinite in the– plane, and microstrip patterns
are assumed to be of infinitesimal conductor thickness.

An EFIE can be set up, by applying the boundary condition
of the zero tangential field on metal surface, as

on microstrips (1)

where is the dyadic electric-field Green’s function, and
is the surface current distribution. For simplicity, the authors
neglect conductor and dielectric losses. If the magnetic vector
potential ( ) and charge scalar potential () as

are introduced, then (1) can be rewritten as an MPIE

(2)

where and are the dyadic Green’s functions for
and , respectively. Both Green’s functions are first derived
analytically in the spectral domain, then evaluated in the spatial
domain using Sommerfeld integrals, discussed in the following
section. and are the unknown distributions of the electric
surface current and charge. They are connected to each other
by the continuity equation. The reason the authors use the
MPIE is to avoid the two-dimensional (2-D) infinite integrals
with highly oscillating and slowly decaying integrands that
must be evaluated in the EFIE. After removing the singular
term from the MPIE’s integrand, which occurs when source
and field points coincide and can be computed in closed-form

[17], only surface integrals with well-behaved functions over
small areas need to be calculated.

A. Dyadic Green’s Function

Before applying the MoM, the dyadic Green’s function for a
multilayered medium is derived. In [11]–[15] only the Green’s
function with the field point in the source layer is discussed.
As a result, planar circuits in conventional microstrip with two
dielectric layers can be investigated, but circuits with three or
more dielectric layers cannot be dealt with. Here, the spectral-
domain Green’s function is derived in a general form. It can
be written as the sum of TE and TM and propagating
waves due to the reflection and transmission between different
layers, no matter where the field point is. The generalized
reflection and transmission coefficients [18] are obtained from
the boundary conditions. For planar microstrip configurations,
only and due to a horizontal electric dipole (HED)
are involved. They are listed as follows, depending on the
location of the field point.

1) Source Layer:

(3)

(4)
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2) Outside Source Layer ( ; ):

(5)

(6)

where is defined as and with as the
wave number of theth layer. The HED is embedded in theth
layer, and the field point is in theth layer. The subscripts
and represent and propagating waves, respectively.
The generalized reflection/transmission coefficients of TE/TM
waves are denoted as and . They are defined
in the Appendix. Equations (3) and (4) are the Green’s
functions with the field point embedded in the source layer
(in this case, ). They are composed of three parts: a
direct term, a single reflection, and a multiple-reflection from
both upper and lower interfaces. Equations (5) and (6) are the
Green’s function with the field point embedded in the layer
differing from the source layer. Because of reciprocity and
the continuity of the Green’s function, only the case of an
HED below the field point ( ) is considered here. Both

and are the multiplication of the transmission
coefficient and propagating components at theand
interfaces. With this spectral-domain Green’s function, any
configuration of planar conductors in a multilayered structure
can be analyzed.

To convert the spectral-domain Green’s function into the
spatial domain, Sommerfeld integrals need to be evaluated.
This is a very time-consuming step since the integrands are
both highly oscillating and slowly decaying. Recently, several
papers have suggested using complex images to approximate
the remaining integral, after extracting the quasi-static and
surface-wave contribution [14], [15], [19], [20]. However, the
expansion terms and sampling region are strongly dependent
on the layer’s thickness and dielectric constant. Also, it is dif-
ficult to find the surface-wave poles for more than three layers.
Therefore, in this analysis, Sommerfeld integrals, after ex-
tracting the quasi-static terms, are still evaluated by numerical
integration [21]–[23]. The quasi-static terms, corresponding to
the asymptotic behavior of the integrand, can be obtained by
letting approach infinity [24]. They can be transformed into
analytic expressions by using the identity

(7)

where is the observation distance. The re-
maining integrals, which converge very fast, are computed
by Gaussian quadrature integration along a contour deformed

Fig. 2. Triangular-patch subdomain function.

off the real axis in the plane, to avoid surface-wave
poles. In order to accelerate the MoM computation, tables of

and versus distance between source and field points
are constructed. These tables are stored as a database and
interpolated repeatedly during the MoM procedure. The same
Green’s function tables are valid for any new conductor shape,
as long as the layer parameters remain the same.

B. The MoM’s

The MoM’s is applied to convert the MPIE to an algebraic
linear system. The first step is to expand the unknown current
distribution with a set of basis functions. To model the
arbitrarily shaped microstrip geometries, the authors adopt
the triangular-patch subdomain function, shown in Fig. 2, and
defined as

otherwise.
(8)

This basis function can describe vector current flow. Its
divergence is constant over the associated triangular face, and
normal components do not exist at the exterior edges. The
meshing algorithm developed in [16] is used to grid the whole
circuit into small triangular facets.

The same current cell is chosen as the testing function
(Galerkin’s procedure) and vector identities are used to re-
formulate (2) as a matrix equation , containing
the following matrix elements:

(9)

In this analysis, the excitation mechanism is a series delta-gap
voltage source, attached at the open end of the input line [25].
Therefore, only one nonzero element exists in the excitation
vector [ ], and it is normalized to be 1 V. The output port(s)
are open circuited.

Several numerical techniques are applied to accelerate the
evaluation of matrix elements [16]. In addition to construction
of Green’s function tables (Section II-A), is divided into
nonsingular and singular parts. The singular part comes from
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Fig. 3. A generalized two-port network.

the singularity of the spatial-domain Green’s function for field
points which are very close to the source point. It can be
evaluated by four seven-point quadratures combined with the
analytic expressions in [16] and [17]. The nonsingular part is
approximated by a three-point average. The process of filling
the impedance matrix is based on facets instead of interior
edges to eliminate many redundant calculations [8], [16]. For
example, it takes only 1 min of central processing unit (CPU)
time to solve a 625-unknown problem on an IBM RS/6000
workstation.

C. Extraction of Scattering Parameters

After evaluating all elements of [] and [ ], the linear
system is solved for the unknown coefficients [], and scat-
tering parameters are extracted from the current distribution.
Consider the generalized two-port network in Fig. 3.and

are the total current in ports 1 and 2, respectively, and
can be separated into two parts: incident ( ) and reflected
( ) components [26]. The current distribution along the
microstrip lines can be recovered from the coefficients []. At
two consecutive sampling points and along the
line, the currents can be expressed as

(10)

(11)

where is the propagation constant along the microstrip line,
determined in advance. Therefore, the coefficientsand can
be extracted from and . For the region far away from
the discontinuity and the excitation point, a standing wave will
be observed. Therefore, and are constants, independent
of . The authors can extract their values by a simple curve-
fitting algorithm. and can be extracted from the port
current distribution in a similar way. To solve the scattering
parameters, there are four unknowns in total, but the authors
have only two equations, although more conditions should
be included. The simplest way is to recalculate the current
distribution with the excitation at portand leave port open.
Following the above procedure, , and can be
determined. Finally, the scattering parameters can be found
from

(12)

(13)

(a) (b) (c)

Fig. 4. Open-end discontinuity. (a) Rectangular open end. (b) Different
open-end configurations. (c) Fabrication of open end on a quartz substrate
(all in mm).

This extraction technique can be generalized easily to multi-
port networks, and is demonstrated to be useful and effective
by the numerical examples in this paper.

III. N UMERICAL RESULTS AND DISCUSSION

In this section the authors present several numerical re-
sults for different configurations: regular/arbitrarily shaped,
single/double-layered circuits, and antennas. The multilayered
dyadic Green’s function is used to solve these general geome-
tries.

A. Microstrip Open-End Optimization

Several different calibration methods can be used to estab-
lish reference planes for measurements of microstrip circuits,
some of which require an open-circuit standard. The accuracy
of the measurements depends on how precisely the microstrip
open is described. Also, the behavior of a true open-circuit
may be more closely approximated by modifying the shape of
the microstrip open. The simply mitered open end was first
discussed in [27] for a coplanar waveguide (CPW) by using a
stair-step approximation. The following comparison between
numerical and measured results shows that the authors’ anal-
ysis method provides the accuracy and flexibility needed to
describe both simple (rectangular) and compensated (shaped)
microstrip opens.

First the authors consider the simple microstrip open-end
discontinuity [see Fig. 4(a)]. A semi-infinite microstrip line is
located on the top of a single-layered substrate with ,
thickness 0.635 mm, line width 0.6 mm (for 50), and line
length 12 mm. Fig. 5 compares the phase of the computed
reflection coefficient to the measurement in [28]. The com-
puted results agree with the measurement to within 1.5%.
To compensate for the end effect, simply mitered as well as
elliptically shaped ends were investigated [see Fig. 4(b)]. The
computed performance is also shown in Fig. 5. The end effect
can be compensated by choosing proper dimensions for either
the mitered or elliptical end. To validate this optimization,
a simply-mitered microstrip open was fabricated on a 1.5-
mm quartz substrate ( ). A 0.2- m nichrome layer
was evaporated first to guarantee adhesion on the quartz,
followed by a 3- m copper layer on top [29]. The relevant
dimensions of the microstrip lines are shown in Fig. 4(c). The
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Fig. 5. The phase of reflection coefficient for different open-end configu-
rations,�r = 9:9, d = 0:635 mm, w = 0:6 mm, as in Fig. 4(a) and (b).
Measurement from [28]. Simply mitered:b = 0:23 mm; elliptical: 2b = w.

Fig. 6. The phase of reflection coefficient for uncompensated and sim-
ply-mitered open-end configurations,�r = 3:37, d = 1:5 mm, as in Fig. 4(c).

authors chose a thick substrate with a low dielectric constant to
exacerbate the end effect problem, and emphasize optimization
of the geometry to minimize this phenomenon. Also, large
geometries are less sensitive to fabrication tolerances. Fig. 6
shows excellent agreement between the measured and com-
puted phase of the reflection coefficient. The simply mitered
open circuit provides the best approximation to a true open
circuit.

B. Microstrip Radial Stubs

The second example demonstrates the authors’ ability to
analyze a single-layered microstrip circuit of arbitrary shape.
Fig. 7 shows a microstrip shunt-connected radial stub. The
substrate has the following parameters: dielectric constant

and thickness mm. The line width is
0.6 mm and is truncated (from the center) at 16.5 mm for
the lower frequencies (below 8 GHz) and 7.5 mm for the

(a)

(b)

Fig. 7. Geometry and discretization of a microstrip radial stub. There is a
total of 488 facets and 644 edges.

Fig. 8. Transmission coefficient of a microstrip radial stub.�r = 10:0,
d = 0:635 mm, w = 0:6 mm, radius = 7.5 mm, radial angle = 60�.

higher frequencies. The radius of the stub is 7.5 mm and the
radial angle is 60. To verify convergence, computations are
presented for two different discretizations: the first one uses
212 triangular facets and 265 internal edges. The second one
uses two cells along the transverse direction of the microstrip
line and more facets along the radial direction of the stubs,
making a total of 488 facets and 644 edges. The computed
transmission coefficient is compared with the measurement
reported in [30] and the result is shown in Fig. 8. Good
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(a)

(b)

Fig. 9. Geometry of a five-section overlap-gap-coupled filter.

Fig. 10. Frequency response of five-section overlap-gap-coupled bandpass
filter, geometry as shown in Fig. 9. (�r1 = 9:8, �r2 = 2:2, d1 = d2 = 0:254

mm, w1 = 0:812 mm, w2 = 0:458 mm, and Table I).

agreement and convergence over a wide frequency range have
been obtained.

C. Doubled-Layered Bandpass Filter

The next example is a five-section overlap-coupled bandpass
filter (see Fig. 9) [31]. It was fabricated from alumina and
duroid substrates with the following tolerances:
and . The thicknesses and are both 0.254
mm. The line widths are mm (top) and

mm (bottom). The fabricated resonator and overlap
lengths are listed in Table I. Equations (5) and (6) are used
here to construct the Green’s function. Fig. 10 is a broad-band
plot comparing the computed and measured responses. Good
agreement can be seen for the low-side rejection, passband
ripple, upper stopband, and second passband. However, there
is a small discrepancy in center frequency. Fig. 11 (the dashed

Fig. 11. Comparison of passband reflection coefficient for the modification
of dielectric constant. Dashed line is from Fig. 10; Dotted line:�r1 = 9:6,
�r2 = 1:0, �r3 = 2:18, d1 = 0:259 mm, d2 = 0:0076 mm, d3 = 0:2514

mm.

TABLE I
FABRICATED RESONATOR AND OVERLAP

LENGTHS OF FIVE-SECTION BANDPASS FILTER

Length (mm) 1 2 3 4 5 6
Resonator
(`res)

6.964 6.442 7.236 6.446 6.960 —

Overlap (xol) 1.316 0.382 0.280 0.276 0.386 1.298

line) shows that the measured upper and lower band edges are
shifted up by 220 and 130 MHz, respectively. The authors
suspect two possible causes: 1) a 0.0076-mm (0.3-mL) air
gap was introduced at the alumina/duroid interface by the
0.0076-mm metallization thickness of the resonators located
there; and/or 2) the actual dielectric constants were below
their nominal values. Therefore, the filter was analyzed again
using the lower bound of the manufacturer’s tolerance for
each dielectric constant as well as an additional layer of air
( mm): , , and . The
actual alumina and duroid thicknesses were determined with a
measuring microscope to be mm and
mm. These modifications produced better agreement, as seen
in Fig. 11 (the dotted line).

D. Proximity-Coupled Circular-Patch Antenna

To illustrate the versatility of this analysis, a circular-patch
antenna is considered as the final example. The configuration is
shown in Fig. 12. In this example, the circular-patch antenna
is fed by a proximity-coupled microstrip line, embedded in
the bottom layer. The two substrate layers have the same
parameters: and mm. Three
transverse cells are used on the feed line, and 128 triangular
facets compose the patch, making a total of 493 internal edges.
Fig. 13 shows that the calculated input impedance agrees well
with the measurement from [32]. It proves that this full-wave
MPIE–MoM analysis using triangular basis functions can be
applied to arbitrarily shaped multilayered microstrip antennas
as well as circuits.
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(a)

(b)

Fig. 12. Geometry of a proximity-coupled circular patch antenna. 128 facets
are used to represent the patch (�r1 = �r2 = 2:62 andd1 = d2 = 1:59 mm).

Fig. 13. The input impedance of a proximity-coupled circular patch antenna
(See Fig. 12 for dimensions).

IV. CONCLUSION

In advanced MMIC technology, multilayered configurations
have become necessary to achieve higher density. The au-
thors have proposed this full-wave spatial-domain analysis to
develop a generalized dynamic model for arbitrarily shaped
circuits and antennas in a multilayered configuration. The
derived dyadic Green’s function can be applied to structures
with any number of layers. Moreover, it is developed so that
the field point and source point can be at different layers
without limitation on the distance between them. In addition,
triangular-patch functions allow any arbitrarily shaped planar
geometry to be modeled without difficulty. Several numerical
results have been presented that show excellent properties
and may find promising applications in MMIC designs. This

analysis provides an accurate and flexible algorithm to model
microstrip antennas as well as microstrip circuits.

APPENDIX

The generalized reflection/transmission coefficients in
(3)–(6) were introduced in [18]. They are listed here in our
notation as follows:

(14)

(15)

(16)

(17)

(18)

where Sgn is 1 only for the TM case of and is 1
otherwise. The HED is embedded in theth layer, and the
field point is in the th layer. The subscripts and represent
the and propagating waves, respectively. The reflection
coefficients can be computed by iteration, with the initial
values and . The parameter is the
local reflection coefficient between the adjacent layers and can
be written as

with half space
with ground plane

otherwise
(19)

with half space
with ground plane

otherwise.
(20)
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